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ABSTRACT

Various analytical methods of non-isothermal kinetics have been applied to
DSC curves to determine the kinetic parameters ruling the lattice reorganization
(primary recrystallization) of prestrained pure copper.

The techniques by Borchardt and Daniels, and Rogers and Smith have been
modified to make them suitable for complex phenomena other than nth-order
reactions.

The results supplied by the new formulas are consistent with the data previously
obtained under isothermal conditions. The same applies to the other methods tested,
provided an accurate temperature calibration be made to correct the thermal lag of
the calorimetric sensors.

Such a calibration is of prime importance when DSC peak shifts are analyzed as
a function of heating rate.

INTRODUCTION

Isothermal measurements carried out by high-sensitivity calorimeters to study
thermally activated processes suffer severe limitations whenever the materials
employed have to be quickly preheated to working temperature.

Serious difficulties, in fact, are encountered both in enthalpic and kinetic
analysis during the first stages of the process, due to baseline perturbations and to the
thermal inertia of the instrument.

It was previously shown in one of these cases, namely the recrystallization of
deformed metals, that stored energy released by pure copper can be easily determined
through the DSC technique, by 2 method which is able to detect the effects produced
by some tens of ppm of foreign elements added to the pure metal’-2. Moreover.
DSC measurements were carried out on specimens partially recrystallized at constant
temperature to determine their residual contents of stored energy, so as to obtain a
picture of isothermal heat evoluticn during recrystallization, avoiding the drawbacks
of isothermal calorimetry.

One object of the present work is to check different theoretical formulations for
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non-isothermal kinetics and to point out that activation energy of recrystallization in
metals can be determined by the DSC curves of stored energy release.

Furthermore, an evaluation of the effect produced on the thermograms by the
thermal inertia of the DSC apparatus is considered possible in the present favourable
experimental conditions (high conductivity of copper, good geometrical reproduci-
bility of the specimens, constancy of specific heat throughout the lattice-reorganization
process).

Finally, an attempt will be made to adapt some kinetics theories for nth-order
reactions to complex kinetics in solids and to apply the new expressions to the study of
recrystallization kinetics in copper.

EXPERIMENTAL

(a) Marerials and methods

The study of the thermal effect connected with recrystallization has been
carried out on pure copper (99.999%, of the firm Koch-Light) deformed by rolling
(reduction in thickness of 85%) and submitted to heating at a constant rate in an
apparatus for quantitative differential thermal analysis (DuPont DSC cell connected
with a 900 differential thermal analyzer).

The purity of the protective atmosphere during DSC runs and the constancy of
shape and weight of the specimens proved to te of prime importance®'? to obtain a
good reproducibility of the thermograms (within 3% of area). A 41 h~ ! flux of argon
depurated on Al amalgam, Ca chips 2t 700°C and Zr powder at 1000°C was used to
prevent any oxydation of copper. A thin sheet of rhodium (0.1 mm) has been intro-
duced between the constantan sensor and the copper specimen to avoid solid state
diffusion at the higher temperatures tested

Rolled sheets of copper have been punched to obtain the deformed specimens
i the shape of discs of 4.5 mm in diameter, 0.96 mm in thickness and 132 to 135 mg
in weight after electrolytic polishing.

(b) Calibrazsion

The correspondence between the recorded temperature and the sample
temperature, and between the area of the thermogram and the energy has been
calibrated by submitting to DSC runs a few milligrams of pure metals which absorbed
2 to 6-10" 2 cal during melting. A recrystallized sample drilled in the center of its
upper face down to ihe core has been used as a support for melting metals, in order
to reproduce the heat transfer path from the specimens to the thermo-electric disc.

The energy calibration curve, giving calcm™2 at the various temperatures,
fitted the experimental points with a maximum deviation of 6%.

After a first test which produced a good contact between the melting metal and
the support, the melting temperature was reproducible within +1°C. In this way
calibration curves of the “real temperature™ of the specimen (i.e., the melting points
reported in the literature) were obtained as a function of the temperature recorded by
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the instrument at different heating rates between 5 and 70°C min ™~ !. The delay in the
calorimetric response depends, as foreseeable, on temperature and heating rate. In
the present experimental conditions the recorded temperature exceeds the real one by
4°C at 150°C and by 17°C at 400°C for the lower heating rate (5°C min~!). whereas
the difference is stronger for higher heating rates, passing, for instance, from 12°C at
150°C to 26°C at 400°C when temperature increases linearly at 70°C min~!. In the
temperature range examined (150 to 400°C) the temperature correction to be made
on the thermograms increases with specimen temperature in an almost linear way for
all the heating rates adopted (5 to 70°C min™?).

The fact that the DSC curve is a delayed picture of the real thermokinetics has
been confirmed by quenching tests that stopped an energy evolution in course and
were followed by a new heating run to determine the residual contents of stored
energy.

A quick admission of liquid nitrogen, sucked inside the DSC cell at the peak
temperature, was able to quench recrystallization at a rate of 90°C min™* (as
monitored by the sample thermocouple) or possibly higher, as the specimen screened
the thermoelectric disc from liquid nitrogen and its vapours.
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Fig. 1. Quenching tests on prestrained copper heated at different rates. Upper curves refer to a
first DSC run interrupted at Ty. Middle curves show the residual contents of stored energy in a
second heating run after quenching, and dashed areas indicate the heat evolution not recorded
because of instrumental inertia. Baselines taken in a third run after recrystallization are also reported.
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Some examples of quenching tests during heating at different rates are reported
in Fig. 1, where three successive DSC runs on a same specimen show the trend of
stored energy release interrupted at 7, the residual energy contents after quenching
(always recorded at the same rate, 30°C min~ !, for quantitative comparison) and
finally the baseline behaviour of the fully recrystallized specimen.

The symmetrical shape of DSC peaks does not change with heating rate, as will be
referred later on, thus the areas of the half peaks recorded in the first runs correspond
to a same amount of energy release. They only differ because the sensitivity of the
instrument depends or the heating rate and is enhanced by a heating-rate increase.

The second runs clearly show that the higher the heating rate before quenching,
the lower the residual contents of stored energy retained by the specimens. In the
present conditions of a reiatively high quenching rate, such difference could hardly be
attributed to changes in quenching effectiveness. It is more reasonable to attribute
them to the differences in the response time of the DSC apparatus, detected by the
melting tests at the various heating rates. The samples would thus reach different
stages of energy evolution beyond the peak, which are not yet recorded at the moment
of quenching (dashed portions of Fig. 1, deduced from the residual energy contents).

When peak temperature 7, is recorded by the instrument, the true condition of
the sample is therefore the one corresponding to the end of the dashed curve and the
real Ty has already occurred at a lower temperature.

Such a calibration confirms fairly well the trend of the curves of the real
temperature obtained by melting tests, and only gives a rather stronger temperature
correction. This fact leads to surmise that the thermal geometry of the melting metal-
copper support system might be improved by a more sophisticated circular distri-
bution of the melting metal around the center of the copper support. The importance
of temperature calibration and its accuracy will be discussed in the next section.

RESULTS AND DISCUSSION

The fractions of stored energy released during linear temperature rises have
been determined on the DSC peaks recorded at various heating rates. These « values
are reported in Fig. 2 as a function of the specimen temperature calibrated by the
melting tests.

Different analytical methods of non-isothermal kinetics have been applied to
the results mentioned above in order to obtain the kinetic parameters of recrystal-
hzation.

(@) Dependirnce of peak temrperature on heating rate

A pronounced symmetry has always been displayed by the thermograms of the
differential temperature in several DSC runs under different heating-rate conditions.

Therefore the temperature of half recrystallization (transformed fraction
a = 0.5) coincides quite well with the peak temperature Ty, i.e., the flex point in the
curves of Fig. 2, and this occurs independently of heating rate.

The requirement is thus met of a constant transformed fraction at peak
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Fig. 2. Stored-energy release as a function of temperature: fractions of stored energy released by
pure copper (99.999%) 85% cold-rolled submitted to linear temperature rises at different rates
between 5.5 and 50°C min~ 1.

temperature to obtain a correct value of activation energy from the relationship
between absolute peak temperature Ty, and heating rate ¢, as discussed by Ozawa?
and Rogers and Smith*.

Figure 3 shows how the experimental points linearly fit the logarithmic plots of
¢ (Ozawa’s method)? or ¢/T% (Kissinger’s method)® as a function of the reciprocal
absolute peak temperature.

The effect of temperature calibration on the slope of the straight lines (derived
by the least square method) is shown in the same figure, where the trend of the curve
corrected by the quenching tests is only approximatively indicated by the dashed line,
because of the limited number of heating rates tested.

While the approximations contained in Kissinger’s and Ozawa’s methods lead
to similar values of activation energy E (see Table 1), it must be remarked that a
temperature calibration by melting tests furnishes an activation energy 25% higher
and a further increase of around 11% may be deduced from the guenching tests.
What is more, the temperature corrections adopted make the E value become
consistsnt with the one previously obtained by the isothermal method and reported in
Table 1 for comparison.

As Ozawa pointeC out?, the relationship betweer heating rate and peak
temperature only holds for DSC cuives (and not for DTA), in virtue of their
derivative character with respect to the thermal effect detected. On the other hand the
position of the thermoelectric sensors outside the sample, and their consequent
thermal Iag which increases with heating rate, is an intrinsic characteristic of DSC
apparatus. Therefore Kissinger’s and Ozawa’s plots always lead to underestimate
activation energy if a calibration of sample temperature is neglected. The error is
around 30% in the present study on copper specimens, but it might be higher for
similar amounts of materials of lower conductivity.
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Fig 3. Kissinger and Ozawa plots showing dependence of peak temperature Ty on heating rate ¢
for DSC curves of deformed copper. O, peak temperatures recorded by the instrument; @, — — —
effect of temperature calibration on the trend of the curves.

Such considerations can account for the low values of activation energy
reported in literature when the results of this method are compared with those
obtained otherwise*-S.

A peculiar characteristic of Kissinger’s and Ozawa’s plots, that marks them off
from the other methods of non-isothermal kinetics, is their ability to supply activation
energy data independently of any assumption of a kinetic model. Rate equation need

only be of a very general type:

T = k(D@ = 26~ 1(z) )
as is also required to determine E by the isothermal method, where log 7 is plotted
versus 1/T for the same transiormed fraction «.

It is worth noting, with respect to the recrystallization process examined, that
straight lines with a slope practically coincident with that of the curve in Fig. 3 are
obtained in Ozawa’s plot for different values of constant « (even other than 0.5), so
that the activation energy is constant (standard deviation of less than 1 kcal mol™?)
throughout the whole DSC peak of stored energy evolution. An examination of the
isothermai data previously collected! confirms such a result, thus indicating that in
85% deformed copper the complex lattice reorganization, taking place through
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nucleation and boundary migration, seems to be ruled by a single value of activation
energy.

(b) Single peak analysis

All the methods concerned with the analysis of a whole DSC peak either
require the choice of a specific function of the transformed fraction in an explicit
form or assume that the investigated process be of nth order.

Referring to methods of the former type, Zsaké? and Satava and Skvara®-®
pointed out that the integration of rate eqn (1) under conditions of a constant
heating rate ¢ = dT/dr, giving:

* dux Tk ZE E ZE
o= [ 42 [(KD gy ZE,(E)_ZE ®
Jof(@®) Jro ¢ R¢ \RT, R¢
may be transformed into a logarithmic expression independent of temperature:
ZE
log g(x)—log p(x) =1o (—) €]
g g(2)—log p(x) gl R ) )
In the temperature range where recrystallization of cocpper occurs and for an
activation energy of 30 kcal mol™*, Doyle’s approximation of log p(x) = —2.315—

0.4567 x coincides particularly well (—1.2% of error in the slope when plotted vs. 1/T)
with the true values of log p(x) tabulated by the same author!®.
Therefore the introduction of Dovle’s approximation in relationship (3) giving:

log g(a) = —0.4567 (EE’I:) —2.315+1og (i—z) @

is justified for an analysis of the results of the present work, as already assumed when
log ¢ has been plotted vs. 1/T according to Ozawa. The expressions of g(x) for various
mechanisms acting in solid-state processes have been extensively reviewed by
Sestak 2. The efficacy of such relationship in accounting for copper recrystallization
data has been checked on the present results by plotting log g(x) against 1/7, as
suggested by Satavall. The table of Fig. 4 reports the linearity interval, the activation
energy and the preexponential factor Z calculated from the above-mentioned plots
relative to mechanisms reasonably involved in recrystallization.

As seen, the linearity interval never extends beyond 60% of energy released and
its extention scarcely helps in detecting the best g(a). In this case, the activation
energy value furnishes a criterion for choice, since only Johnson—Mehl-Avrami’s
equation with the exponent r = 2/3 gives a result of 29.8 kcal mol™ 1, in good agree-
ment with the data obtained by methods independent of a kinetic model (isothermal
measurements, Kissinger’s and Ozawa’s plots).

The same choice of g(x) =[—In (1 —x)]?/3 is also supported by the 11.27 value
found for log Z since the preexponential factor for thermally activated processes in
solids is stated as falling within the field of 101°~101% sec™* (refs. 12 and 13).
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Fig. 4. Saava plot of log g(2) vs. 1/7T for DSC curves of deformed copper beated at 30°C min~*.
The a-function of Johnson-Mehl-Avrami’s kinetics f(2) = (1 —a) [—In (1 —a)}*/3 has been used
to obtain the integral values reported on the ordinate as a logarithm. The corresponding values are
reported in the same figure to evidentiate the linearity interval. The results of an application of this
method for other kinetic models are reported in the table on page 9 below.

Actually, recrystallization kinetics has been hitherto best described isothermally
by Johnson-Mehl-Avrami’s kinetics for nucleation and crystal growth, even though
their analytical expression has proved to be failing in the later stages of the pro-
@SS14"5- 3

The same applies to the present case, as resuits in Fig. 4, where log g(x) for
needle type growth of random nuclei is reported as a function of 1/7.

Satava’s method therefore indicates that the kinetic theory for phase trans-
formations in metals by Johnson-Mehl-Avrami is a good approach for a kinetic
study of recrystailization, but also shows its limits of validity.

In the lack of a completely satisfying theory to account for the stored energy
fractions released in the whole temperature range where energy evolution occurs, an
attempt has been made to express f(z) as a two-function product, according to the
suggestion by Sestak and Berggren for empirical kinetics!®.
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(¢) Empirical kinetics: extension of Rogers and Smith’s, and Borchardt and Daniel’s
methods

It has been mentioned above, while discussing the single-peak analysis, that
some methods are concerned with nth-order reactions. These treatments are not
suitable for the present recrystallizetion study, since the analysis of the thermograms
according to the method by Satava has clearly shown that a single function like
f(x) = (1 —a)” cannot agree with the experimental data. It is claimed, however, by
Sestak and Berggren that f(2) in solids may be expressed as follows:

f(x) =2"(1 —n\' In (1 —x)1? (5)

=

and that only one or two exponents, out of the three m, n and p, need be determined,
since no more than two a-functions are required for a complete description of f(z) in
all the cases examined until now?!°.

The kinetic treatments by Rogers and Smith?, and by Borchardt and Daniels*?
may then be adapted to all the types of kinetics in solids by substituting expression (5)
to the simpler function f(a) = (1 —)” employed for nth-order reactions.

Let us thus assume as a starting kinetic equation

da

— =k(Na"(1-a)’ [-In(1—-x)]° ©

ai
Kinetic equation® Intercaf of E Log Z® Standard®

linearity (%) (kcal mol—*) deziation

Diffusion
a2 =Kkr 20 84.5 35.29 0.015
(—ax)In(il—a)+a=kr 33 86.7 36.01 0.016
11— —a)'32=ks 33 898 36.83 0.021
(1-23—(1—a)?¥3 =kt 33 87.7 3585 0.017
Phase boundary react.
- -3 =ks 33 44.1 17.21 0.009
—-(—a)3= 33 449 1 0.010
Random nucleation
[—In(1—2)|=kr 60 44.7 17.81 0.022
|—In (A—)}*3 =kr 60 29.8 11.27 0.014
—In(i—a)j?*=ke 60 224 8.04 0.011
j—In(Q—a)|*3=kr 60 14.9 4.86 0.007
[—In(—)jV* =kt 60 11.2 3.30 0.005
Porwer law
alit=ks 47 i0.0 2.79 G.005
a3 =Kks 47 13.4 4.15 0.007
a2 =Kt 33 20.9 7.38 0.004
x=kt 33 41.9 16.46 0.007
a3 =ks 33 62.8 25.67 0.01t

* The case models reported are extensively reviewed by Sestdk'2. ® Z is expressed in sec™ *. < For the
experimental points with respect to the least squares line.
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In this case the b deflection of the DSC curve from baseline, according to
Rogers and Smith*, becomes:

b=AZe (1 —a)'[~In (1 ~x)]° D

where A is the total area under the DSC curve*.
Differentiating eqn (7) with respect to time, and taking into account that
b= A(dx/dt), we have:

db hz[m n_ p . E dTI] ®

de Az A(l—2) A(l—o)[-In(l—=2)] RT* di b
hence:
(1-2)db | m(l—a) p —g) — —
b* dt [ Ax +A[—ln(1—a)]] bRT"( %) ©

This equation coincides with the original relationship given by Rogers and
Smith when m = p = 0. The plot of the left side of (9) against 1 —a/b- T? should then
furnish a straight line with ¢E/R slope and —n/A intercept at the origin.

If it is considered that db/dr =0 at the peak temperature 7,¢, the frequency
factor Z can be obtained from eqn (8) or (9) by substituting for b its value expressed
in relationship (7):

_ﬁ_ E/RTm n—1 _ P_
z RTZ [ngy(1—2)” " [—In (1 —a)]

— oy {1 — )" [—In (1 —ey )] — pafi(1 —ay)™™ - [—In (1 —ary)]P 117!
(10)

Borchardt and Daniels” method, too, can be generalized by starting again from
eqn (6) to express the reaction rate. But since the above-mentioned authors®” refer to
the initial ard actual number of reacting moles (N, and N) it is more convenient to
rewrite eqn (6) in the following form:

dN

-—= k(T)Noya™(1—a)’[-In (1 —2)}* =

N\ NY N
=k(DN ({1 ——} {— 1—- 11
() o( No) (No/ n o..l (11)

*The calibration coefficient used to calculate the heat effect from peak area is taken as independent
of temperature in Rogers and Smith’s theory. When such a condition is not fulfilled, but the calibra-
tion coefficient has a small and almost linear variation in the temperature range covered by the
process investigated, its mean value in this temperature range may be taken as a constant (as con-
sidered in Borchardt and D2aniel’s treatment).
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On the other hand, reaction rate and moles present at time ¢ are related by
Borchardt and Daniels to the differential temperature AT, to the specific heat of the
sample C,, and to the heat transfer coefficient K’:

_4N_ N, (c,dAT+K'AT>
at KA\

and N=N,—(No/K'A)(C,AT+K'a), where a is the area under the DSC curve
swept out at time 7.

Therefore, the introduction of these two expressions in eqn (11) enables one to
calculate the rate constant in the following form:

K(T) =

1 ( dAT
3 Ka\""7ar *

1 1 1 P
—(CAT+K'AY|1 ——(CAT+K'a —In{l———(C_AT+K'a
K’A( P ) [ K'A( F ’H ( K'A( ’ ))]

(12)

Equation (12) is reduced to the original relationship by Borchardt and Daniels
for nth-order reactions when m = p = 0, but may also be employed in a simpler form
when the conditions C,-dAT/dt<K’AT and C,AT<KX’a arc experimentally met.
In this case, in fact, the smaller terms may be neglected and eqn (12) for the rate
constant becomes:

ATIA _ AT/A
(5)~ (A-—a)" [_h A—a]’ (-0 [l (1-a))
A A A

Equations (9), (10) and (12), or (13), can then be used to determine the kinetic
parameters of processes with a known empirical f(x). The determination of this
a-function for the recrystallization of copper and its introduction in the new formulas
is dealt with in the following section.

k(D)= 13

(d) Determination of f(x) and empirical kinetics of recrystallization

There are some indications from a DSC study of recrystallization on copper—
oxygen alloys'® that an analysis of DSC peaks according to Rogers and Smith, and
Borchardt and Daniels gives rise to linear plots. Even though recrystallization cannot
be framed in a scheme of nth-order transformation, the fractions of stored energy
released by copper specimens heated at a rate of 30°C min~ ! also in the present case
fit a straight line in a diagram derived from Rogers and Smith’s theory (upper curve
of Fig. 5).

The 1.7 reaction order deduced from the intercept value at the origin, or one
slightly smaller (n = 1.6) as will be discussed later on, would seem correct, since a



158

1-&.db o 3
% b‘) dt »gmc.aa]’°
€0
| ROGERS and SMITH METHOO
%0 (<]
y4
th
n'"-ORDER /
reaction | A
(p=0)
r’ [ MODIFIED METHOD
(ps¥3)
/
4
L)
o
!
o © 20 30 “ %0
-
-

Fig. 5. Rogers and Smith plots according to the original method (upper curve) and to the generalized
expression (9) adapted to Johnson-Mehl-Avrami's kinetics (p = 1/3, lower curve) for DSC curves of
deformed copper heated at 30°C min~ *. b and 7 are measured in millimeters and seconds, respectively.

Borchardt and Daniels plot (unsuitable for a first order reaction, lower curve of
Fig. 6a) is properly fitted if n = 1.6 (upper curve of Fig. 6a).

However, activation energy and frequency factor given by such diagrams
strongly disagree with the other values of Table 1.

It is therefore worth pointing out that a linear fitting of the experimental data
in Rogers and Smith’s, and Borchardt and Daniels’ plots may be obtained even in the
presance of complex kinetics, which is obviously misleading if one expects to draw
correct kinetic parameters.

A recent work on recrystallization of copper by Okada et al.*® can be submitted
to this kind of criticism, since a first order kinetics is assumed to calculate activation
energy.

Rogers and Smith’s method, however, is found suitable for detecting the very
value of n that makes Borchardt and Daniels’ plot become rectilinear (Fig. 6).

This fact brings one to surmise that (1 —x)" could be used as one of the two
a-functions suitable for an empirical description of the recrystallization kinetics of

copper.
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Fig. 6. Arrhenius plot of In k vs. 1/T according to the Borchardt and Daniels method for DSC curves
of deformed copper heated at 30°C min~ *. (a) Original method for two different orders of reaction;
(b) modified method in the simpler form (13) adapted to Johnson-Mehl-Avrami’s kinetics (n =1,
p=1/3; lower curve) and to the empirical expression f(z) = (1 —a)"'-¢ [—In (1 —a)]'/3 (upper curve).

The second function should be [ —In (1 —x)}?, which is contained in Johnson-
Mehl-Avrami’s equation. The appropriate choice of p = 1/3, in fact, leads to a plot
of log g(x) vs. 1/T (Fig. 4) which is by 60% linear and has a correct slope.

The introduction of p=1/3 and m =0 values in Rogers and Smith’s gener-
alized expression (10) gives origin to the linear fitting of the present results reported
in Fig. 5 (lower curve). While the intercept at the origin gives an n value similar to the
one previously determined (1.6 instead of 1.7), it must be noted that both activation
energy and frequency factor now become consistent with isothermal data, as reported
in Table 1.

Modified Borchardt and Daniels’ eqn (12) may be employed in its simpler
form (13), in present experimental conditions of prestrained copper heated at 30°C
min~!. It may be seen (Arrhenius plot of Fig. 6b), that the introduction of the
exponents n=1 and p=1/3 in expression (13), as suggested by Johnson-Mehl-
Avrami’s equation, can only account for the first half part of DSC peaks (lower
curve), even though reasonable kinetic parameters may be deduced (see Table 1). A
completely linear fitting of the Arrhenius plot is on the contrary obtained (Fig. 6b,
upper curve) if one takes for the exponent # the 1.6 value furnished by the Rogers and
Smith plot, corrected for the Johnson-Mehl-Avrami Kkinetics.

Both the generalized expressions by Borchardt and Daniels, and by Rogers and
Smith lead to determine activation energy and frequency factor in good agreement
with the isothermal method (see Table 1).
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In the meantime both methods indicate that the rate of energy evolution during
recrystallization of 85% cold-rolled copper depends on a function of the transformed
fraction that may be expressed by:

fl@)=1—-a)"[-In (1 —2)]'?

(e) Kinetic parameters of recrystallization

From a formal standpoint it is evident that the » = 1.6 exponent accounts for
the symmetrical feature of the bell-shaped DSC curves, while the p = 1/3 exponent
essentially fixes their width and the connected values of activation energy and
frequency factor.

As for the E parameter, it has been shown that calibration tests by quenching
strongly affects the results of Kissinger’s and Ozawa’s kinetic analysis and lead to
calculate an activation energy higher than 31 kcal mol~ . Such calibration, though
less effective in the case of the single peak analysis, lowers the data of the generalized
methods by Rogers and Smith and by Borchardt and Daniels down to 35 kcal mol ™.

]
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Fig. 7. Correlation between isothermal and non-isothermal heating, producing the same « trans-
formed fraction in deformed copper: Doyle plot of the log time of isothermal heating at 431 K and
the reciprocal of the absolute temperature at different constant heating rates. 1 =5.5°C min~*;
2=10°Cmin~!;3=20°Cmin~!; 4=30°Cmin—!; 5=50°C min~?*.
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A further confirmation of this same field of possible values ranging between
31-35 kcal mol ™! is drawn from Doyle’s method2? which correlates the #,5, times of
isothermal treatment and the T}y, temperatures reached at constant heating rate to
produce the same « transformed fractions. Doyle’s plot of log 7o at 431 K vs. 1/T; iy
for the present DSC results at various heating rates gives the straight lines of Fig. 7
and a consequent mean value of activation energy of 34.9 kcal mol~! reported in
Table 1.

The logarithmic values of Z frequency factor are also given in the same table.
Their calculation has been performed on the basis of g(x) =[—In(1—a)]'/3, as
indicated by the Satava method, or of f(a), when needed, with the exponents n = 1.6,
P = 1/3. The g(x) contribution in the evaluation of Z is verv small, when the isothermal
and the Kissinger’s and Ozawa’s methods are employed, so that these data are
practically independent of the kinetic model chosen. Taking a suitable f(x) is on the
contrary of prime importance if Z is calculated from Rogers and Smith’s or from
Borchardt and Daniels’ expressions.

As seen in Table 1, the relevance of a temperature calibration in the various
cases examined is strictly parallel to the one discussed for activation energy results.

In any case the corrections adopted are able to reduce the spread in the values of
Z by making them fall in the range 10!°-10'% sec™ 1, typical for solid state reac-
tions!2-13.

TABLE 1

KINETIC DATA FOR RECRYSTALLIZATION OF
99.999% COPPER DEFORMED BY ROLLING 85%

Method Activation energy, E Log of frequency fcctor, Z
(keal mel™ 1) (Z in sec™ 1)
@" ® ©) (a) ® ©
Kissinger® 224 279+1.8 311 7.64 10.31+0.79 13.62°
Ozawa? 23.2 284117 314 8.12 10.60%0.78 12.02°
Satavall (r=1, p=1/3) 30.8 29.8+0.6 29.0 11.48 11.27£0.27 11.12
Rogers and Smith* — 52.4 _ — 21.37 —_
Rogers and Smith modified
(p=1/3) 373 35910.8 349 14.59 14.27+0.36 14.02
Borchardt and Daniels®?
(n=1) —_ 470 —_ —_— 18.83 —
(n=1.6) —_ 49.4 — —_ 19.95 —
Borchardt and Daniels
modified (n=1, p=1/3) —_ 30.7 —_ —_ 11.84 —_
(n=1.6, p=1/3) 36.4 35.3+04 343 14.15 13.92+0.19 13.70
Doyle2° — 349125 — —_ — —_
Isothermal 33.6t34 13.43+1.70°

* The results are obtained: (a) from registered temperatures; and from temperatures calibrated
(b) through melting tests, and (¢} through quenching tests. ® The frequency factor is evaluated on
the basis of the Johnson—-Mehl-Avrami equation [—In (1 —a)]*3 =k(T)-t. ¢ Standard deviztion
calculated for straight lines of Fig. 7.
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Among the various methods tested for a kinetic study of recrystallization, the
isothermal technique, the non-isothermal analyses by Kissinger and Ozawa, and
Doyle’s correlation between isothermal and non-isothermal parameters do not
require any initial assumption as regards the acting mechanisms to determine the
activation energy of the process investigated. All of them have been found sufficiently
in agreement, as to the value obtained for activation energy, to lead one to discard all
kinetic formulations for solid state processes except the Johnson-Mehl-Avrami
equation for linear growth of random nuclei (p = 1/3), which is also supported by the
corresponding value of frequency factor, as mentioned above.

A mono-dimensional growth of recrystallized particles could actually prevail
in the deformed matrix of copper before grain growth afier recrystallization, because
of the strong tendency of this metal to produce textures of isooriented crystals.

It should be of some interest, as far as the comprehension of the recrystal-
lization process is concerned, to assess the theoretical significance of a change from
1 to 1.6 in the n exponent of the Johnson-Mehl-Avrami theory, which only foresees
possible variations of the » exponent, according to the dimension of the process.

CONCLUSIONS

Generai aspects of non-isothermal kinetic analysis applied to the DSC technique
have been considered in the present work, together with topics more specifically
related to the recrystaliization process investigated on copper.

Two orders of considerations have then been drawn, and those of the former
type may be summed up as follows:

(1) Temperature calibration of DSC thermograms is mandatory when kinetic
parameters are deduced from peak temperature dependence on heating rate.
Kissinger’s and Ozawa’s methods would otherwise make one underestimate activation
energy and frequency factor.

(2) When f(@) and g(z) functions of known reaction mechanisms cannot fully
account for the experimental results of a given process according to Satava’s method,
this latter couid loose its efficacy as a means for detecting the more suitabie kinetic
model. The knowledge of aciivation energy deduced otherwise can, however, favour
such a choice, thus giving information about the functions to be used for an empirical
description of the phenomenon, as suggested by Sestak and Berggren.

(3) A linear fitting of the plots by Borchardt and Daniels and by Rogers and
Smith is not probatory in establishing that the reaction or transformation is of nth-
order, but rather indicates that (1 —z)" is one of the two suitable functions for an
empirical evaluation of f(x). Both above-mentioned methods have been modified to
widen the field of their application to more complex kinetics, which could not be
described in terms of nth-order reactions.

As regards recrystallization of pure copper, prestrained to an 85% reduction in
thickness, the following conclusions have been reached:
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(1) Stored energy released during linear temperature rise gives a symmeirical
DSC peak, the maximum rate of heat evolution always occurring at the half-trans-
on point « = 0.5, independent of which heating rate has been adopted.
(2) Kinetic parameters of recrystallization derived from analytical methods of
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(4) 10C Jonnson—imvicni—Avialiil [ncory Ior pnasc [rans TInation m meials can
account for recrystallization progress in copper up to 60% of the transformed
fraction, through its expressions for f(x)={(I—x)-[—~In{(1—2)}"? and g(x)=

[—In (1 —2)]?/3.

A description of energy evolution rate comprehensive of the later stages
beyond x = 0.6 is obtained if the dependence on the transformed fraction is expressed
by f(zx) = (1 —a)*-¢[—In (1 —x)]*/3.
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